Model 3 mit LFP-Zellen: Der große nextmove-Wintertest

Model 3 with LFP cells: The big nextmove winter test

In the current video, nextmove delivers an all-around review of all relevant test disciplines with regard to the winter suitability of the Tesla Model 3 Standard Range+ from Chinese production. Tesla delivered around 15,000 Model 3 in Germany in 2020, of which around 70% were with the large battery and all-wheel drive. 30% were the base Standard Range+ with rear-wheel drive and small battery. In December, the share was as high as 40%. This variant came for the first time from Chinese production with a different battery technology. That is why the cars were offered with an additional price reduction of 3,000 euros. After the general price reduction in January, the Model 3 Standard Range+  costs "only" 35,000 euros after incentives in Germany.

https://youtu.be/9N05pHUymtM

Currently, various videos and forum posts about this car are circulating on the web. Many users are dissatisfied and feel left alone and deceived by Tesla. With the video, nextmove wants to provide clarification and classification with concentrated expert know-how. Managing director Stefan Moeller has tested the car intensively over six weeks and covered more than 1000 test kilometers. His conclusion: "No other electric car has provided us with such stark test results so far."

The video shows advantages and disadvantages of this battery technology, because it's not just about Tesla - other manufacturers are also relying on these batteries in the future. It will be shown why lithium iron phosphate batteries are technically a special challenge for all manufacturers!

The following questions are in focus:

  • What are the problems with usable capacity, range and consumption in winter?
  • Where do the high charging losses come from?
  • Why do the cars at the Supercharger sometimes charge so slowly?
  • What makes these cars "tick" and what strategies does Tesla use to combat the cold?
  • What do you have to do so that the car charges quickly?
  • When should you preheat the battery in everyday life?
  • How does the car behave after the latest software update?
  • What does Tesla say about it and how are customers informed when buying and using it?

In the video nextmove comes down hard on Tesla, but also shows affected Tesla drivers a first silver lining on the horizon! In addition, it is resolved, which battery get customers who order a Tesla Model 3 Standard Range+ today.

What are customers saying about the Model 3 from China?

The exterior condition of these cars is the best Tesla has ever built. Paint, gaps and finish are top notch inside and out. The handling and interior noise are also good. Despite this, many customers are massively dissatisfied and comment on social media about the battery, range and charging:

  • "A bit of disillusionment has set in. With 90% battery only 160km."
  • "Currently 29kW charging power at 26%. This is far too little."
  • "Do you have any assistance? My Model 3 charges maximum to 80%."
  • "Drove the battery to 10% yesterday, charged overnight at the socket. Car stopped charging at 68%."
  • "Had 45% earlier and 8 hours later only 21%. I just want to understand this car."
  • "Annoys me slowly really that the box loads so slowly.... So I have not imagined"
  • "This is just big crap. My wife was served: "you had told me before the purchase but differently."
  • "A useless pile of garbage it is. ... Tesla says it's all normal and fine. For me, unusable and unacceptable."

Another nextmove viewer got stranded. His car jumped on the highway within 2 minutes from 14% to 0% charge and has shut down. He was driven to the next Supercharger by tow truck.

There is no information from Tesla about the problems. Many have fulfilled their personal Tesla dream with the car and invested more money than they have ever spent on a car before, even if it is "only" the base. Long-distance capability through fast charging and simple operation is Tesla's central product promise, and until now that has also applied to the entry-level models. It is possible that this is different now. How bad is the car really or is it all just a big misunderstanding?

nextmove offers test fleet for all

nextmove is Germany's leading electric car rental company. With nearly 400 vehicles, including 40 Tesla, the company offers thousands of customers a year at 12 locations the opportunity for a personal everyday test with various e-cars. Most customers are enthusiastic and the decision about the drive of the next car is usually made quickly with a rental. In individual cases, however, customers also discover that the actual favorite among the models does not meet their personal requirements profile - so a rental at least prevented an annoying bad purchase.

Image: nextmove managing director Stefan Moeller with the test car
Image: nextmove managing director Stefan Moeller with the test car

What does Tesla say about the new battery technology

Customers' issues with the new cars are clearly about the battery and the software. Actually, both topics in which Tesla has a pioneering role and yet it's not running smoothly with this model. Now you might think that there are data sheets and catalogs, so everyone should read what they get beforehand and not complain afterwards.

With Tesla it is not so easy. There are no brochures, price lists and technical data sheets. Only rough data is shown on the homepage. There is no real performance information. Tesla also does not provide any information on battery capacity before the purchase. Furthermore Tesla does not provide any factory information on the central purchase argument of fast charging!

That was different a few years ago. After all, fast charging is a software feature at Tesla that can change at the manufacturer's discretion during the life cycle of a vehicle. Tesla therefore no longer specifies the data so that it doesn't have to be measured against it later. On the homepage, it simply says: "Up to 275km in 15 minutes recharging." Of course, this statement refers to the large battery under ideal conditions. The customer does not find out how fast the small batteries charge.

But what kind of battery does my car have anyway? The owner's manual provides information on this: "Liquid-cooled lithium-ion battery." That can be anything, of course. No cell type. No capacity specification. Nothing. The customer buys the car virtually blind, trusting in range and acceleration. But isn't the battery supposed to be an improvement? Yes. In many respects it is. The data sheet of the Tesla battery is, of course, a secret. The cells are supplied by CATL, one of the cell market leaders from China. But comparable batteries have been around for many years and much is known.

General advantages of LFP cells:

  • A high number of charge cycles, up to 10,000 are possible, meaning the battery should outlast the car by far. More than two million kilometers are possible.
  • A wide temperature range, high load capacity and good fast charging capability of theoretically up to 150 kilowatts in the Model 3.
  • The low risk of thermal runaway, which is understood to be spontaneous combustion that becomes a chain reaction by spreading to neighboring cells.
  • A high electrical efficiency for a total cycle of charge and discharge together of greater than 91%.
  • Low self-discharge when stationary of circa 3 to 5 % per month.
  • Better environmental compatibility and resource conservation through the renunciation of cobalt - and at Tesla also nickel - while at the same time easy recyclability.
  • And of course: significantly lower costs in purchasing for the manufacturer.

Where are the disadvantages and problems?

  • Significantly higher weight, in the Model 3 after all just under 150 kg for the small battery.
  • On the cold compatibility is not much known. Individual manufacturers cite -45°C as the limit for charging and discharging.
  • A very flat voltage curve during charging and discharging makes it difficult to determine the state of charge.

Quick charging of the Model 3 from China

nextmove has intensively tested the Model S Standard Range+ in December 2020 and January 2021. In all tests, outdoor temperatures were in the range -5 to +5°C, mostly around zero. First, fast charging was investigated in different scenarios. Scenario 1: Arrival on winter vacation and there is no charging option and the driver wants to make a quick trip to the Supercharger the next morning. Scenario 2: A Model 3 driver does not have his own charging station and wants to cover his energy needs in everyday life with occasional fast charging.

The car was driven to a nearby fast charger after a frosty night, but did not fast charge. Only about 12 kilowatts of charging power was achieved, which is less than 10% of what the car was supposed to take. So far so bad.

However, this is not a problem of the China Teslas until then, but pretty much all e-cars would have behaved like this or similar in this situation, even the expensive Teslas or Porsche Taycan. Subsequently, the car was driven for about 30 minutes, and a Tesla Supercharger was recorded as a navigation destination. Then the car actively starts a preconditioning of the battery (i.e. a heating process in winter) and shows this to the user in the display. Nevertheless, it was only possible to charge at the fast charger with about 30 kilowatts of power. This led to the negative user experience described at the beginning, because the charging power remained at this level over the course of the next 15 minutes and the entire charging process would probably have taken two hours.

The matching evaluation in the graphic shows: driving off when the battery is cold at 2 degrees does not cause the battery management to heat the battery. Most German electric cars would heat the battery in this condition. At the first charging stop with about 10 kilowatts of charging power heats the battery, but manages it in 15 minutes only from about 2 to 5 ° C, without the charging power improved.

Then navigation to the Supercharger activates the preheat function. This heats the battery to 13°C after 30 minutes of driving. A VW ID.3 would have now already charged with about 60kW - the Model 3 achieves only half of that. After 15 minutes of charging, the battery was then at 17°C, but the charging performance was still unsatisfactory at 30kW. The normal user would probably turn to Tesla and ask for help.

In the next test run, nextmove liked to get to the bottom of things to find the optimal charging curve. For this, the test was started again with a cold battery. First, the preheat function was started in the app, and then the car showed an icon for preheating the battery in the app. This process took over an hour until it was terminated by the vehicle, the charge level dropped from 98 to 80 percent.

Then test driver Stefan Moeller started for a fast highway drive of about 120 kilometers at 150 kph, choosing a Tesla Supercharger as navigation destination. The display in the vehicle showed active preconditioning of the battery for almost the entire drive. The battery was then almost empty and presumably at optimum operating temperature. The charging power was briefly at 120 kilowatts, but immediately dropped again and stabilized in the range of about 70 kilowatts. The Model 3 thus charges slower than the competition from VW, specifically an ID.3 with a medium battery.

The next graph first shows the course of voltage and current of the optimal charging process. What technically savvy users will notice is the particular voltage curve in blue. In the range between 8 and 95 percent charge level according to the display, the difference in voltage is only about 1 volt.

nextmove Grafik Verlauf Spannung Stromstärke Schnellladung

The course of the battery temperature as a basis for the high charging power was particularly exciting during this test drive. The annotated graph shows the course over 4 hours of testing from 2 to 43 ° C.

nextmove Grafik Temperaturverlauf Akku LFP-Zellen Vorheizen Fahren Laden

By the way, at about 40°C battery temperature the car had switched off the battery heating. After that, it only went up slightly and the curve flattened out. But the battery was not cooled. This information does not emerge from the graph, but was determined separately.

For comparison, another test day was determined when starting the car without preheating and not selecting a Supercharger as a destination.  The test was at a constant 120 kph until the battery was empty. 

In blue the graphic shows the heating circuit of the battery, this runs flat ahead of the battery temperature with about 3-5 degrees. Presumably, the battery was also heated here the whole trip with, although no Supercharger with was used as a destination input. Possibly even waste heat from the engine is used for this. At the end of this empty drive, we are after all at 22 °Akkutemperatur, which would have been sufficient but not yet for full charging power.

In the test, the battery charged from 6 to 75% in 32 minutes after all. This is significantly better than the values with cold battery. But the expectation of many customers is based on the Model 3 SR from US production. These charge almost 175 kilowatts at peak, the 100 kilowatts are only undercut at about 45 percent charge level. That's a different world. For the test vehicle, there was a software update shortly before the editorial deadline that brought improvements. These are considered in the conclusion of the test.

Also of interest: What are the costs of such a preheating process? To do this, we again show the heat output over time. Almost 75 minutes the car draws 6-9 kW from the battery and heats it up to 22°C. This battery maintenance costs once about 3 Euro. But the car had continued to heat during the drive. So all in all you need roughly 2h driving or/and preheating. The cost are estimated about 5 euros of heat investment into the battery at the temperatures in the test.

It would be nice if the battery not only stores electricity, but also heat for a while, so that the user does not have to spend so much energy the next day to charge properly fast. Unfortunately, that is not the case.  The next morning, the battery was again cooled down from over 40 ° C to 5 ° C.

Range and usable battery capacity

Range is not always that important in everyday life, but for many customers it is a decisive purchase criterion. And if you see the comments from customers mentioned at the beginning, there's a lot wrong with this topic, too. So nextmove tested it. For this, the car was first fully charged in two complete test cycles and then run down to 0% on the on-board computer display. The tests took place on dry roads and temperatures just above freezing on a flat freeway circuit around Leipzig. The results of both test runs were nearly identical, with a range of 230km. Nextmove estimates that 30% higher ranges are possible in the summer.

It was noticeable during both test drives a low net withdrawal from the battery - the on-board computer showed 44 to 46 kWh withdrawal. The vehicle registration document shows 55kWh. The question of whether this value is gross or net was left unanswered by the Tesla press office when asked by nextmove. Comparable values for new Tesla Model 3 from US production are in the range 51-52 kWh withdrawal according to the on-board computer. The cause of the difference of 5-7 kWh to the test vehicle explains nextmove in a later part of the video.

No secret overweight in the Tesla Model 3

Based on deviations in previous tests, for example, with an Audi etron 55 quattro, which revealed 120 kg overweight on the scales, nextmove has also reweighed the Tesla Model 3 from China. The Tesla homepage states a weight of 1,745 kg, this figure does not include the driver. The scales in the test showed 1760 kg. In this respect, everything is okay. No secret overweight, because the charging cables were in the car and the test vehicle was also equipped with a trailer coupling. The weight including the driver is entered in the papers, 1,825-38 kg for our test car. The permissible total mass is 2139 kg. That makes about 300 kg payload.

Vampire losses and load losses

The term vampire loss is actually exclusively associated with Tesla. It refers to the vehicle's own losses when stationary. It must be said clearly that Tesla is in a league of its own in this discipline. Probably no other series-produced e-vehicle consumes so much electricity when not in use. What does Tesla itself say about it?

A look in the user manual shows the specification of 1% per day, whereby manufacturer specifications describe yes mostly the optimal case. Tesla also refers to special factors. In the test, it was 14% over the course of a week of non-use, i.e. 2% per day. Depending on the software status and use of digital services such as guard mode or app queries, this value can of course deviate in both directions.

At 2% per day, that's about 100 euros in electricity costs per year. For comparison, 100 euros a year is about the basic charge in the charging tariff at VW to be able to charge at IONITY for 30 cents/kWh. Volkswagen also provides a source and shows a document in the ID.3 First Mover Club that 1-2% per month of stand losses. 

The vampire losses of course do not end up on the consumption display in the on-board computer. For the determination of the charge losses, this variable should therefore be excluded. Consequently, the energy requirement was remeasured in one piece, if possible, from 100 to 0% empty and then recharge. The first test showed a withdrawal of 43.74 kWh according to the on-board computer. Recharged at a 11 kW station with calibrated counter directly at the withdrawal point 52.12 kWh, according to the vehicle 51 kWh.

On the basis of the calibrated display, the additional cost is 8.38 kWh - that's a whopping 19.2% losses. That's not a good value. Efficient vehicles come in this discipline to values of 8-13%.

Regarding "charging losses" it is important to note, that one can not measure or calculate the losses during the charging process. Recorded and shown are the deviations between the consumption according to on-board computer and the reference at the charging station and thus what was really consumed in the end and what must be paid. Even the preceding driving speed has an impact on the values, this connection had shown nextmove in previous tests.

Ladeverluste LFP-Zellen

Why does the Model 3 have such high losses of 19%? The reason is that the test candidate does not like the cold so much. The charging process did not take place directly after the empty drive, but there was a night of standing time in between. Nextmove wanted to bring the car to its limits, after all, to provide new insights.

And what happens overnight? The battery cools down again, in this specific case from 23 to 3°C and only then the charging process was started. A cold battery means higher internal resistance. This worsens the efficiency not only when driving, but of course also when charging. And something else curious happened during charging.

The Model 3 heats the battery first. Actually nonsensical, because in normal charging, the user approach is actually "I came to stay." At home the charging time is not as important as at the Supercharger. But apparently Tesla does not want to charge the battery in cold status.

According to the display at the charging station, the car has used about 11 kW, but of this only about 7 kW end up in the battery for about 35 minutes and he takes 4 kW for heating. The battery heat wentup to approx. 27 degrees and the large heavy battery pulls sluggishly after on approx. 12 degrees. Then the heater switches off and the 11 kW end up completely in the battery.

What does that mean for the complete charging process? The losses for the additional heating process were about 2.3 kWh. But if we had charged the car directly after driving with the warm battery, these would not have been incurred. Correcting the values accordingly results in 13.9% charging losses - which is absolutely fine for winter. In summer, 10% are certainly possible.

For a second charge test, the car was again driven from 100 to 0%. Withdrawal according to the on-board computer 45.63 kWh. Charging was then done with the Tesla-UMC, which is the emergency charging cable for household sockets. The device can actually charge with 13A, which would be about 3 kW. But that can melt some household sockets. Therefore it was throttled to 10A, about 2.3 kW. This time is was charged directly after driving at 22°C warm battery. The charging process took about 24h and the battery cooled down to about 7°C, because the night was with -5°C relatively cold. The car showed at the end 53 charged kWh.

The value of the charging station showed this time a higher deviation from the vehicle value namely 56.56 kWh. That's almost 11 kWh charging losses absolute - and in percentage a whopping 24% and thus 10 percentage points more than at the wallbox. At 100,000 kilometers driven, the additional costs for snore charging are about 500 euros. nextmove therefore recommends the use of a wallbox.

What now makes the lithium iron phosphate battery so different and special?

On the one hand, this technology is new to Tesla. Tesla is always full speed and is willing to take risks. Tesla is a master of software and can comprehensively intervene in the entire vehicle fleet at any time and make improvements. According to a report by Inside-EVs, the supplier of the cells, namely CATL, confirmed that it took only nine months between the announcement of the Model 3 with this battery pack and the start of the delivery of LFP cells to Tesla. Normally, manufacturers take more like 2 years for something like that. So it sounds quite like the customers are in Beta Testing phase right now. 

The sensitivity to cold has been pointed out so far, but there is a second challenge, namely: how does the car know how much power is left in the battery? This is controlled by a BMS: Battery Management System. One of the key thresholds is voltage. The graphic shows in blue the voltage curve of a normal charging process at a wallbox.

On the one hand, an extremely flat curve is noticeable in the middle area. On the other hand, the curve is very steep at the edges. After the charging process, the voltage dropped to about the value that it had in the charging process at 15% charge level and another 8 h later it was even lower. If you remember the statements of customers quoted at the beginning, the BMS of these cars is pretty much in the dark at the beginning, because apparently Tesla did not teach the cars the points where the battery is full and where it is empty.

As a new customer, you apparently have the choice between a car that simply shuts down at 14% charge on the highway. Or one that stops charging at 68%. The calibration of the battery has to be done by the customer, but Tesla does not provide any information or instructions. Unless the customer drifts around regularly in the Chinese Twitter called Weibo.

In a Weibo post, Tesla had asked owners to fully charge at least once a week. Not only that, they were to charge to 100 percent whenever the car was on the power source. Anyone familiar with Tesla's communication policy knows that such a clear statement to customers is not made without necessity. From the steeply rising course of the voltage towards the end of the charging process, you can clearly see that this is a clear fixed point for the upper end of the capacity for the BMS.

In the lower range, it is already more difficult. At first nothing happens for a long time. Then suddenly comes the crash of the voltage and thus also the capacity of the battery and with it the range. And the car has to know beforehand where this point is so that it can count down the kilometers. To ensure that no one breaks down, Tesla keeps some reserve at the lower threshold. In the graph, we see on the one hand the charge level according to the internal BMS of the manufacturer and the value that Tesla displays to the customer. 

In the nextmove test, the car was emptied to 0% according to the display, but the internal (not visible) value of the BMS still showed 13% power in the battery. This high reserve of course explains the low ranges of the customers and why nextmove only got 44 or 46 kWh out of the battery as shown before. In the further course, the car was heated for about an hour at maximum power and during this time, another approx. 5 kWh was taken out of the battery. Then came the shutdown message of the vehicle. The internal BMS value fell in this hour from 15 to 5.5%.

Estimation of nextmove

Tesla is the first major manufacturer who dares to go this way with the lithium iron phosphate batteries in the volume segment. The only exception is BYD in China. The first steps are obviously not easy, but competitors who also want to use LFP batteries in low-cost vehicles will look at Tesla with interest. Tesla is again a pioneer, despite the collateral damage we are currently experiencing.

If the battery's lifespan holds up as expected, it will be virtually indestructible compared to others, and customers will get a car with a worry-free warranty on the most important component. On the second-hand market, the cars could be in hot demand in a few years, when the warranty on the battery has expired after 160,000 km and the batteries still have a very high range.

The future of these batteries lies primarily in the segments where it is about the price and solidity - and not about high performance parameters. These include commercial vehicles, for example, where there is enough space for a larger battery anyway. And small cars, which don't need as much range and therefore don't need a large battery. Volkswagen is also expected to use LFP cells in vehicles of the new small car generation. Such cars are sometimes moved for years without a single fats charging.

Tesla's Model 3s with LFP cells are currently moving in a "safe mode," according to nextmove estimates, which means driving first and not breaking down if possible. Tesla collects data and will then readjust via software updates. The customer does some of the development work for the manufacturer. The battery is heated in all conceivable ways, at least when charging, but in some cases not yet strongly enough to reliably charge it quickly in winter. The sensitivity to cold will remain.

If you want to charge quickly in winter, you have to invest high losses in battery heating, and even on other occasions, the software controls the battery heating without user intervention. Currently there is a reduced usable capacity to prevent stalling, this is of course associated with a currently reduced range. Nextmove assumes that the cars will calibrate better in the course of use and through software updates. As outside temperatures rise, they - like all e-cars - will offer more range. And fast charging will also work better in the spring.

Which battery will current buyers get?

There was no statement on this from Tesla. On the Tesla homepage, there was a clear indication that vehicles from China will also come to Germany in the future for the base model. In the description of the Model 3 Standard Range, Tesla has increased the vehicle weight to the high value of 1745 kg without driver. Presumably, however, this was done only to take the wind out of the sails of dissatisfied buyers from December.

German customers with facelift models will get the proven lithium-nickel-manganese-cobalt-cells from the United States. The hint to it gives a list of orderers which is led in the Tesla Driver Forum. The 7th digit of the vehicle ID number stands for the battery. The China models have there an F and now there is again an E, so lithium-nickel-manganese-cobalt-cells.

What does the current update bring?

For this, nextmove ran another test on February 1 and first brought the battery to about 35°C operating temperature as described and drove the car to 0% charge level according to the display and then charged. The display briefly showed a peak value of 153 kW charging power, i.e. a significant increase and presumably a world record for MIC Model 3 during winter. But the charging power drops quickly and significantly as before.

The car had reached 50% after 20 minutes and recharged power for about 150 km winter highway kilometers. In total, the charging process took just over 1h and ended once again at displayed 91%, despite new software and warm battery still first mover status. Charged were about 50-51 kWh including losses.


Reichweitenkiller E-Auto mit Anhänger

Anhänger-Check fürs E-Auto: VW ID.4 Reichweite & Markt-Überblick zu E-Autos mit AHK

In den vergangenen Jahren mussten E-Auto-Kunden bei einer Kaufentscheidung das Kriterium Anhängerkupplung aussparen, da kaum Modelle mit eingetragener Zuglast am Markt verfügbar waren. Seit 2020 ändert sich das Zug um Zug, aber ganz einfach ist es noch nicht. Im folgenden Blogbeitrag zeigen wir, was schon alles möglich ist, wo noch Probleme liegen, und machen zudem den ultimativen Praxistest. Dieser zeigt, wie sich verschiedene Anhänger auf die Reichweite von E-Autos auswirken.

Wer darf denn nun alles einen Anhänger ziehen?

Wir haben für Euch eine Übersicht mit aktuellen Fahrzeugen zusammengestellt. Außerdem haben wir einige kommende Modelle wie IONIQ5, Mercedes EQA und Tesla Model Y mit den erwarteten Eckdaten mit aufgenommen. 

Wir haben die Fahrzeuge von oben nach unten nach Basis-Listenpreis sortiert. Weitere Angaben sind die Anhängelast und der Aufpreis für die Kupplung. Spitzenreiter ist das Tesla Model X mit 2.250kg anhängelast. Damit lassen sich auch größere Wohnwagen ziehen. Besonders auffällig ist die Quote an hochpreisigen Fahrzeugen aus dem SUV-Segment. Neben einigen Vans sind sonst nur der Polestar 2 und das Tesla Model 3 zu finden. Nur zwei Autos liegen unter 40.000€ Listenpreis, wobei der Einstiegspreis beim Skoda Enyaq eher theoretisch ist, weil wie Basis-Ausstattung quasi unkaufbar ist. 

Wenn wir 1500 kg als Schwelle für das Ziehen von leichten Wohnwagen ansetzen, dann kommen ca. sieben Modelle in Frage, von denen derzeit nur 5 am Markt verfügbar sind.

Gibt es Alternativen für andere Fahrzeuge? 

Ja, gibt es, aber nicht viele. Neben dem Tesla Model S gibt es eine AHK-Nachrüstung von Drittanbietern noch für Renault Zoe, soweit bekannt für alle Modellvarianten von 2013 bis heute. Es handelt sich jeweils um fahrzeugspezifische Lösungen mit eigener Zulassung. In beiden Fällen wurde die AHK aber jeweils ohne den Segen der Hersteller entwickelt. Es bestehen gewisse Restrisiken für Streitfälle bei garantie-relevanten Defekten. Das Recht ist sicher in den meisten Fällen auf der Seite der Kunden, aber Recht haben und Recht bekommen ist ja leider nicht immer das Gleiche.

AHK Anbieter für Elektroautos zum nachrüsten - Tesla Renault VW

Darüber hinaus gibt es noch weitere Angebote für den Kupplungsantrieb ausschließlich als Lastträger, z.B. für den Transport von Fahrrädern. Diese haben wir in den Zusammenstellungen nicht berücksichtigt.

Wie sind die Testergebnisse?

Getestet wurden zwei ähnliche Anhänger, die sich im wesentlichen in der Höhe des Spriegelaufbaus unterscheiden. Das Zugfahrzeug war ein VW ID.4 1st Max. Ein Anhänger war flach und ein Anhänger hoch aufgebaut und den ID.4 überragend. 

Spezifikationen des Anhängers: 750 kg zul. Gesamtgewicht (im Test auf ca. 450kg beladen), 250x120cm Ladefläche, ungebremst, auf 80 km/h limitiert.

Gefahren wurden mit beiden Aufbauten  nacheinander je eine Testrunde von knapp 94 km auf der Autobahn rund um Leipzig bei nasser Straße und winterlichen Witterungsbedingungen mit jeweils 80 km/h. Als Referenz diente eine Normalfahrt über die gleiche Distanz ohne Anhänger bei maximal. 120 km/h, im Schnitt wurden 107 km/h erreicht.

Der flache Anhänger rollt im Windschatten des ID.4 und erhöht den Luftwiderstand kaum. Was bedeutet das für die Reichweite? Die Autobahnreichweite wird mit einem flachen Anhänger gegenüber der Fahrt ohne Anhänger nicht reduziert, sondern steigt sogar. Das lag natürlich am Speed. Der Luftwiderstand steigt mit der Geschwindigkeit nicht linear, sondern im Quadrat. Im Resultat verbraucht das Gespann bei 80 km/h ca. 9% weniger als der ID.4 allein bei 120 km/h. 

https://youtu.be/lSH-n7VzoHg

Reichweitenvergleich VW ID.4 Anhängerbetrieb

Die resultierenden Autobahnreichweiten für den ID.4 liegen im Winter also bei 310 bzw. 340 km Testfahrt im Januar 2021, 0-3°C, leicht windig, Straße nass, VW ID.4 1st Max 77 kWh 150 kW, 19 Zoll Winterräder, Heizung 21 °C, Anhänger WM Meyer: 1-achsig, ungebremst, 80 km/h-Zulassung, 750 kg zul. Gg., Ladefläche 250x125cm, ca. 200 kg Zuladung, flache Plane und Spiegelaufbau, Gesamtreichweite geschätzt auf Basis 75 kWh Entnahme bis Anzeige 0 km

Im Stadtverkehr, könnte sich ein anderes Bild ergeben, da der Luftwiderstand nahezu egal ist, sich aber die Masse stärker auswirkt - auch wenn das E-Auto dank Rekuperation viel Energie zurückgewinnt. Aber auf der Autobahn dominiert der Luftwiderstand. Das zeigt sich im Test mit der hohen Plane – denn ihr ahnt es schon, das sieht nicht sehr windschlüpfrig aus. Der ID.4 hat einen Strömungswiderstandsbeiwert - kurz CW-Wert - von 0,28. Das ist jetzt nicht atemberaubend niedrig für ein Elektro-SUV - aber immer noch besser als beim Tiguan mit seinen 0,32.

Aber die Plane steht natürlich wie eine Wand im Fahrtwind und ruiniert erstens den cW-Wert und vergrößert zweitens die Stirnfläche. Dies zeigen die Schnee-Ablagerungen auf dem Foto mit Anhänger. Diese weiße Fläche ist Schuld, dass der ID.4 deutlich mehr Energie aufwenden muss, um den Anhänger zu ziehen und die Geschwindigkeit zu halten. Der Motor zieht bei 80 km/h sage und schreibe 37% mehr Energie aus dem Akku, als bei der Fahrt mit flacher Plane. Und das lässt die Reichweite von 340 km auf 250 km kollabieren.

Was heißt das jetzt für Elektroautos als Zugmaschinen und für wen sind sie geeignet?

Wer häufig lange Strecken mit einem großen Anhänger, Pferdeanhänger oder einem Wohnwagen fahren will, für den ist ein Elektroauto derzeit vermutlich derzeit ein zu großer Kompromiss. In der Oberklasse kann man von Reichweiten mit großen Anhängern im Bereich 200-250km ausgehen. Natürlich gibt es Menschen, die auch heute vollkommen entspannt alle 2-3 Stunden eine Pause einlegen. Aber das dürfte für die große Mehrheit derzeit keine Option sein - muss es ja auch nicht.  Die Anhängelasten werden mit jeder Fahrzeuggeneration weiter steigen. Aktuell ist das Model X Spitzenreiter mit  2.250kg Anhängelasten.

Tesla mit Anhänger nextmove

Aber da soll ja noch der Tesla Cybertruck mit 6,3 Tonnen Zuglast kommen. Ob der Pickup-Truck auch nach Europa kommt, wissen wir noch nicht.  So oder so werden andere Hersteller mal wieder nachziehen müssen.

Oft noch unpassend ist die Anordnung der Ladestationen für Gespanne. Mancherorts gibt es aber schon gute Lösungen, an denen für Gespanne 3 Wünsche erfüllt werden: Nicht rückwärts rangieren müssen, nicht abkuppeln müssen und keine anderen Ladestationen blockieren, so zum Beispiel auch an den Fastned-Stationen im neuen Ladepark am Kreuz Hilden.

Und wer einen Anhänger nur ganz selten braucht, der findet bestimmt noch lange einen Bekannten mit einer Zugmaschine und fossile Autovermietungen gibt es ja schließlich auch noch. Für diese wenigen Stunden im Jahr würde ich zumindest, nicht auf die vielen Vorteile des Elektroautos verzichten wollen.

Tesla mit AHK Anhängerkupplung von oben

Ich selbst bin mit dem Anhänger aus dem Video früher zu fossilen Zeiten schon mehrfach Touren über 400km gefahren und unser Video hat gezeigt, dass sowas mit etwas mehr Zeitaufwand möglich ist. Auch im gewerblichen Bereich könnte dieses Einsatzprofil interessant sein.

Wer den Anhänger aber auf Strecken bis maximal 150 km braucht, z.B. für die Fahrt zum Baumarkt oder um Grünschnitt zu entsorgen für den ist die Reichweite eigentlich egal - Hauptsache das Lieblings-E-Auto darf auch was ziehen!

Wir würden uns wünschen, dass mehr Hersteller und vor allem auch im Segment Kompaktklasse eine AHK für E-Autos anbieten. Viele Nutzer würden sich auch mit Zuglasten von 500-750kg begnügen und eine Leistungsdrosselung im Anhängerbetrieb wäre sicher zumutbar. 

Wir bedanken uns für die Bereitstellung von Bildern bei unseren Zuschauern Nicole, Miguel, Steven und Stefan.


Alles muss raus - E-Auto nextnews #133

Endspurt: Alles muss raus & Mercedes-Modell-Offensive - nextnews #133

Zum Jahresende geben offenbar alle Hersteller noch mal Vollstrom bei der Auslieferung von E-Fahrzeugen, schließlich kann so mancher Kandidat noch die Strafen für das Nicht-Erreichen der Flottenemissions-Vorgaben drücken. Laut Äußerungen der VW-Führung in den letzten Tagen, wird VW das Ziel wohl knapp verfehlen, vermutlich um ca. 1 Gramm. Aber welchen Einfluss hat der deutschlandweite Lockdown auf die Jahresend-Rallye der Elektroauto-Branche?

Alles muss raus: Auslieferungen trotz Corona stemmen

In den meisten Bundesländern wurde durch Allgemeinverfügungen der stationäre Autohandel geschlossen. Die Beratung - telefonisch oder online - ist aber meist gestattet. Auslieferungen dürfen unter Auflagen stattfinden. Wer also weiß, was er will, oder sich im Internet schlau gemacht hat, hat auch die Chance, trotz Corona noch ein neues Auto zu erhalten. Ein weiteres Handicap ist aber die teilweise eingeschränkte Arbeitsfähigkeit in den Kfz-Zulassungsstellen.

Aber die Mühe lohnt sich aus der Sicht der Hersteller: Jedes einzelne zugelassene E-Auto erspart den Herstellern Strafzahlungen bis in den fünfstelligen Bereich. Verfehlt Volkswagen sein Ziel um 1 Prozent, werden Strafen von 250 Millionen Euro fällig. Wenig überraschend hat sich VW daher nach unseren Informationen alleine beim ID.3 für den Dezember eine Verdopplung der bisherigen Gesamtzahl der deutschen Zulassungen vorgenommen. Das wären ca. 7.500 Fahrzeuge.

Dazu ´kommen noch die letzten eGolf und eUp, sowie weitere Fahrzeuge aus den anderen Marken des Konzerns. Auch die Werksauslieferungen bei VW in Wolfsburg und Dresden laufen weiter - und zwar nicht irgendwie, sondern quasi im Tesla-Modus. Sogar an Weihnachten und Silvester wird VW Autos ausliefern.

Allein am Standort der Gläsernen Manufaktur in Dresden will VW in der zweiten Dezemberhälfte 870 ID.3 - und zusätzlich noch eGolf und eUp - an Kunden übergeben.

Immer wieder hören wir aber auch von Verzögerungen. Daher: Wenn ihr von Lieferverzug betroffen seid und eine Freigabe für einen Mietwagen habt, dann fragt gerne bei uns ein E-Auto zur Überbrückung an. Wir bieten für solche Härtefälle bei unklarer Dauer der Miete auch eine tagesgenaue Abrechnung an - und wenn verfügbar, dann gibt es bei uns sogar einen ID.3. Wenn nicht, dann schauen wir mit Euch gemeinsam, welche Autos frei sind, ins Budget passen und Euch zusagen.

Das Angebot gilt natürlich auch für jedes andere Elektroauto, bei dem sich die Auslieferung verzögert.

Bei Tesla geht es traditionell um die Erreichung hoher Quartalszahlen und im letzten Quartal natürlich um das Jahresergebnis. Tesla will dieses Jahr trotz mehrwöchiger Produktionsunterbrechung 500.000 Fahrzeuge ausliefern. Indirekt geht es aber auch bei Tesla ums CO2 - denn von jedem zugelassenen Tesla werden die CO2-Credits teuer an Fiat Chrysler und Honda verkauft und gleichen dort Verbrenner aus.

Die bisherige Höchstmarke an Auslieferungen eines Modells in Deutschland hält der Renault ZOE mit 5010 Fahrzeugen im Oktober. Wir sind uns sehr sicher, das sich Tesla mit dem Model 3 im Dezember deutlich darüber platzieren wird, und vielleicht sogar die Marke von 10.000 Fahrzeugen knacken kann.

Sowohl Tesla als auch VW liefern also bis Jahresende fleißig Autos aus. Für Euch zur Info nochmal die Stichtage: Für das CO2-Budget zählt die Erstzulassung des Autos. Für das Tesla-Quartalsergebnis zählt das Auslieferungsdatum an den Kunden. Und für die Festsetzung des Mehrwertsteuersatzes ist ebenfalls das Auslieferungsdatum die Basis zur Erstellung der finalen Rechnung mit dem passenden Satz. Bis 31.12. sind es noch 16 Prozent, ab 1. Januar wird´s dann wieder teurer.

Bei beiden Unternehmen leidet aber unter dem Druck auch das Thema Service. Kunden haben uns berichtet, dass bei den ID.3 teilweise veraltete Software installiert ist, was ein späteres Update beim Händler erfordert.
Bei Tesla gibt es zwar passende Software, aber keinen Strom. Kunden werden da schon mal mit 10% Ladestand vom Hof geschickt. Das reicht dann mit etwas Reichweitenangst gerade bis zum nächsten Supercharger.

Für Käufer eines Modells aus China mit Lithium-Eisenphosphat-Akkus ergeben sich bei Kälte am Anfang sehr lange Ladezeiten.

Mercedes startet Modell-Offensive

Über Mercedes berichten wir bisher selten in den nextnews. Das liegt daran, dass es bisher noch nicht viele Modelle mit Marktrelevanz von Mercedes gibt. Doch das wird sich 2021 vermutlich ändern. Daimler hat diese Woche seine "Electric First"-Strategie für die kommenden beiden Jahre kommuniziert.

Ebenso wie die meisten Hersteller, strebt auch Mercedes dabei „eine führende Position bei Elektroantrieben und Fahrzeug-Software an“. Forschungs-Vorstand Markus Schäfer sagte: „Den Fokus legen wir dabei insbesondere auf die Batterietechnologie. Dabei setzen wir auf einen umfassenden Ansatz, der von der Grundlagenforschung und Entwicklung bis hin zur Produktion reicht und auch strategische Kooperation einschließt.“

Die Batterien für die Mercedes-EQ Elektrofahrzeuge soll ein globaler Batterie-Produktionsverbund mit Fabriken auf drei Kontinenten liefern. Bis 2022 sollen insgesamt sechs reine Elektroautos auf den Markt kommen.

Den Anfang macht das Kompakt-SUV EQA, das aktuell bereits in Rastatt vorproduziert wird. Am 20. Januar wird der EQA offiziell vorgestellt. Die Produktion des EQB – ebenfalls ein Kompakt-SUV, aber etwas größer - läuft 2021 in Ungarn und China an.

Besonderes Augenmerk liegt auf dem EQS – sozusagen der elektrischen S-Klasse. Der EQS soll im ersten Halbjahr 2021 in Sindelfingen in Produktion gehen. Es wird dabei das erst Auto sein, das die neue Architektur für Elektroautos der Luxus- und Oberklasse bei Mercedes nutzt.

Im Basismodell soll die Batterie mehr als 90 kWh groß sein und 500 Kilometer Norm-Reichweite ermöglichen. Die große Batterie soll für bis zu 700 Kilometern ausreichen.

Nach unseren Erkenntnissen setzt Mercedes dabei auf ein 400-Volt-System. In der zweiten Jahreshälfte 2021 startet in Bremen und Peking die Produktion der Business-Limousine EQE.

In den USA, wo man als ernstzunehmender Hersteller größere Fahrzeuge als in Europa anbieten muss, sollen EQE und EQS als Elektro-SUV lokal produziert und verkauft werden. Der Produktionsstart ist für 2022 vorgesehen.

In Summe will Daimler 2022 acht Elektroautos auf der Straße haben:  Zwei Luxus-Limousinen, zwei Kompakt-SUV und zwei Luxus-SUV. Günstig werden die ganz sicher nicht aber das ist auch nicht der Ansatz von Mercedes. Bereits auf dem Markt sind der EQC und der EQV.

Ich bin sehr gespannt auf die neuen Modelle von Mercedes und freue mich auf zahlreiche Testfahrten und Vergleiche mit anderen Elektroautos wie dem BMW iX3 oder Tesla Model Y.

https://youtu.be/ylf3Ia6M-Eg

nextnews #133 Themenübersicht:

00:00 Intro

00:35 Jahresendrallye bei Tesla, VW & Co

07:54 EnBW forciert Ausbau von Schnellladern

12:51 VW ID.3 Leaks

17:29 Mercedes startet Modelloffensive

20:29 Teslas Baufortschritt in Grünheide

22:23 Erlkönig-Schau

24:14 Neues von nextmove


Umweltsünder E-Auto Replik mit nextmove

Umweltsünder E-Auto – was ARTE in seiner Dokumentation NICHT sagte

In der TV-Dokumentation „Umweltsünder E-Auto“ kritisiert der französisch-deutsche TV-Sender ARTE den Rohstoffhunger der westlichen Zivilisation – zu Recht, weil der Abbau von Lithium, Neodym oder Kupfer mit erheblichen Folgen für Mensch und Natur verbunden ist. Als Sündenbock stellen die Autoren allerdings – zu Unrecht – alleine Windkraftanlagen, Elektroautos und grüne Technologien an den Pranger. Dabei sind es gerade diese grünen Technologien, die den gesamten Rohstoffhunger der Welt massiv reduzieren könnten. Umweltsünder ARTE?

Inhalt der TV-Doku „Umweltsünder E-Auto“

Die Dokumentation „Umweltsünder E-Auto“ aus dem Hause des deutsch-französischen Fernsehsenders ARTE vom November 2020 zeichnet ein bedrohliches Bild: Die Energiewende ist im Grunde ein gigantisches Greenwashing, das die Umweltvernichtung sogar beschleunigt – Teil einer großen Weltverschwörung zu Gunsten von Tesla oder BMW und zu Lasten der Bevölkerung in Süd- und Lateinamerika, der Republik Kongo oder China, die die größten Lieferanten für Lithium und Kobalt, Kupfer oder Seltene Erden sind.

https://youtu.be/A6PiYvmIpSw?t=563

Die dramatisierend in Szene gesetzten Bilder mahnen an, die Folgen für Mensch und Umwelt zu bedenken – an sich wichtig und richtig. Falsch ist die Einseitigkeit in der Darstellung. Denn ausschließlich grüne Technologien für die Folgen des Rohstoffabbaus verantwortlich zu machen, ist verzerrend falsch, zumal angesichts der Vielzahl an Falschinformationen eine tendenziöse Darstellung unterstellt werden könnte. Deutlich wird dies anhand folgender Passagen:

Ohne Neodym zum Beispiel könnte ein Elektroauto gar nicht erst losfahren

(Minute 08:08)

Fakt ist: Zahlreiche Elektroautos fahren mittlerweile mit Asynchronmotoren, die in der Regel ohne Neodym-Dauermagneten auskommen. Exemplarisch aufzuführen sind der Audi e-tron quattro, der Mercedes EQC oder der Renault Zoe. Hinzu kommt: Die Dauermagneten können als eigenes Bauteil nach Lebensende vollständig entnommen und erneut verwendet werden. Weitere Alternativen könnten Relunktanzmotoren und Radnabenmotoren werden.

Früher war es das Erdöl. Jetzt sind wir dabei, in neue Abhängigkeiten (von Seltenen Metallen) zu geraten.

(Minute 11:03)

Erstens sind wir nach wie vor abhängig von Erdöl, weil die Weltwirtschaft immer noch darauf basiert. Zweitens wird hier versucht, Erdöl und Seltene Metalle als Rohstoffe gleichzusetzen. Diese lassen sich aber nicht unmittelbar vergleichen. Der gewaltige Unterschied besteht darin, dass Seltene Erden recyclebar und somit wiederverwendbar sind. Öl hingegen wird zumeist verbrannt und ist somit verloren.

Ab Minute 12:20 zeigt der Film den Graphit-Abbau in China, bei dem Umweltauflagen nicht eingehalten werden und Arbeiter ihre Lungen nicht ausreichend schützen. Neben dem natürlichen Abbau kann Graphit auch energieintensiv künstlich hergestellt werden. Künftige Methoden der Wasserstoffgewinnung wie die sogenannte Methanpyrolyse von Erdgas erzeugen entsprechenden Kohlenstoff als Nebenprodukt. Neben der Förderung in China gibt es weitere Staaten, die in den Graphitabbau eingestiegen sind. Bis 2018 stieg der Anteil von Mosambik auf 9 Prozent.

In der Batterieforschung gibt es darüber hinaus Bestrebungen, Graphit durch Silizium zu ersetzen. Beispiele sind die Entwicklungen des niederländischen Unternehmens LeydenJar oder von Sila Nanotechnologies.

Elektroautos brauchen viermal mehr Kupfer als Verbrenner.

(22:34)

Die Aussage ist korrekt, Kupfer ist u. a. wesentlicher Bestandteil der Batterien. Beachtenswert ist aber die gute Recyclingquote von Kupfer. Nach Angaben des Deutschen Kupferinstitut Berufsverband e.V. werden bereits jetzt rund 35 Prozent des weltweiten Bedarfs mit recyceltem Kupfer gedeckt.

Umweltauswirkungen des Elektroautos sind vergleichbar mit denen des Verbrenners.

(49:29)

Der Film zitiert eine Studie der Organisation ADEME aus dem Jahr 2014, der zu diesem Ergebnis gelangt. Angesichts der raschen Entwicklung rund um das Elektroauto in jeglicher Hinsicht ist diese Aussage heute nicht mehr haltbar. Eine Vielzahl an aktuellen Studien gelangt zum Ergebnis, dass das Elektroauto zwar einen CO2-Rucksack mit sich herumträgt, dieser aber nach einer Laufleistung von 30.000 bis 50.000 Kilometern geleert ist.

Seltene Erden werden bislang kaum recycelt.

(1:22)

Die Aussage ist irreführend. Ein Recyclingproblem haben wir insbesondere bei Elektronikschrott, bei Lithium-Batterien von Handys oder Laptops. Diese verstauben viel zu häufig in den Schubladen und Kellern der Menschen. Ein Pfandsystem für die Rückgabe könnte hier Abhilfe schaffen.

Gleichzeitig gibt es eine Vielzahl von Firmen und Verfahren, die beispielsweise Elektroauto-Batterien recyceln, darunter z. B. die Firma Duesenfeld in der Nähe von Braunschweig, Redwood Materials in Kalifornien oder der schwedische Zellproduzent Northvolt. Fakt ist aber, dass die Mengen noch viel zu klein sind, um attraktiv zu sein, eben weil Elektroauto-Batterien nach ihrem ersten Leben im Elektroauto auch noch ein zweites Leben als stationärer Stromspeicher hinter sich bringen, und erst dann zum Recycling müssen.

Wir müssen, trotz allem, auf diese Technologien setzen, denn sie sind entwicklungsfähig.

(1:24, Olivier Vidal)

Die Aussage von Olivier Vidal ist das richtige Fazit für die Dokumentation. Ja, auch Elektroautos und Windkraftanlagen können nicht herbeigezaubert werden, sondern benötigen Rohstoffe. Oft werden die einmal gewonnen Rohstoffe einer Kreislaufwirtschaft zugeführt, und dass bei der Recyclingrate noch Luft nach oben ist, eignet sich nicht als überzeugendes Argument, um den Grundansatz zu delegitimieren.

Ein Elektroauto beispielsweise, hier als Umweltsünder verschrien, wird jeden Tag ein Stück sauberer, legt man den globalen Strommix zugrunde. Dazu gibt es unzählige Bestrebungen im Hinblick auf die Reduktion besonders teurer Rohstoffe wie Kobalt oder Graphit.

Die Dekade der Umwälzungen beginnt

Die 20er-Jahre werden eine Dekade technologischer Durchbrüche. Lösungen wie Quanten-Computing, 3D-Druck, Roboter in der Produktion, Künstliche Intelligenz und autonomes Fahren werden unsere Gesellschaft maßgeblich umkrempeln.

Grundlage dafür ist die technologische Disruption, die sich im Energiesektor abspielt: Die Preise für Solarzellen, Windkraftanlagen, Batteriespeicher und Elektrofahrzeuge sinken rapide, sodass die Zubauzahlen mittlerweile global explodiert sind. Die Folge: Bezahlbare saubere Energie wird überall verfügbar.

Die Welt wird dezentraler, ressourcenschonender und gerechter: Bis 2030, innerhalb von zehn Jahren nach der behördlichen Genehmigung von autonomen Fahrzeugen, werden 95 Prozent der zurückgelegten US-Passagiermeilen mit autonomen Elektrofahrzeugen auf Abruf zurückgelegt, die Flotten und nicht Einzelpersonen gehören, und zwar in einem neuen Geschäftsmodell, das als „Transport as a Service“ (TaaS) beschrieben werden kann.

TaaS wird zur kostengünstigen Transportalternative für jedermann – vier- bis zehnmal billiger pro Meile als der Kauf und Besitz eines neuen Autos und zwei- bis viermal billiger als der Betrieb eines bestehenden Fahrzeugs im Jahr 2021. Da die Fahrzeuge zehnmal häufiger im Einsatz sein werden wie individuell besessene Autos, können alle Transportwünsche mit einer insgesamt wesentlicher kleineren Anzahl an Fahrzeugen erfüllt werden.

Die Zahl der Passagierfahrzeuge auf amerikanischen Straßen könnte von 247 Millionen auf 44 Millionen um vier Fünftel zurückgehen. Insgesamt werden 70 Prozent weniger PKW und Trucks pro Jahr produziert als heute.

Ein radikaler Umbruch zeichnet sich auch in anderen Bereichen ab. Beispielsweise könnte aus rein ökonomischen Gründen die Vieh- und Rinderzucht verschwinden. Stattdessen werden wir Fleisch aus dem 3D-Drucker oder dem Bioreaktor konsumieren. Verbunden mit gewaltigen Einsparungen an Ressourcen.

Die nächste industrielle Revolution ist eine Effizienz-Revolution.

Seba, Spezialist für die Prognose technologischer Disruptionen

Tony Seba ist Stanford-Ökonom und Spezialist für die Prognose technischer Disruptionen. Im Jahr 2010 sagte er für 2020 einen Preis pro Kilowatt Solarenergie von 3,5 Cent voraus. Zuerst für unmöglich erklärt, tritt nun exakt das ein, was der CEO des Thinktanks RethinkX vorhergesagt hatte. Ähnlich präzise sind seine Prognosen für Batterien oder Elektroautos.

In seinem kostenlosen Buch Rethinking Humanity stellt Seba den Wandel durch eine Fülle technologischer Durchbrüche bis 2030 dar – und belegt, wie radikal sich unsere Gesellschaften verändern werden. Im Zentrum stehen Elektroautos, autonomes Fahren, Windkraft, Solar und Batterien – exakt die Technologien, auf die wir der Dokumentation „Umweltsünder E-Auto“ folgend verzichten sollten?

Fazit: Was ARTE in der Dokumentation nicht sagte

Die Dokumentation „Umweltsünder E-Auto“ inszeniert mit fragwürdigen Aussagen, der einseitigen Auswahl von Experten und cineastischen Tricks ein Bild, das den Eindruck vermitteln soll, die Energiewende sei schlecht. Dabei bleibt die Frage zurück, wie das Elektroauto, dessen Boom erst gerade beginnt, überhaupt ansatzweise für die skizzierten Schäden an Mensch und Umwelt verantwortlich sein kann.

Die Warnung, wir liefen nach der Abhängigkeit vom Öl nun in eine neue Abhängigkeit von Seltenen Metallen hinein, hätte unter Berücksichtigung des Recyclings besser eingeordnet werden müssen. Und schließlich sieht die Dokumentation das Elektroauto im 1:1-Vergleich mit dem Verbrenner. Aufgrund der disruptiven Entwicklung der kommenden Dekaden ist aber genau davon auszugehen, dass der Fahrzeugbestand massiv schrumpfen wird – und damit auch der Rohstoffhunger der grünen Technologien.


Winter-Performance von Elektroautos - Youtube-Banner

Winter performance: nextmove tests battery, quick charging, heating and co.

Winter is a challenge for all kinds of cars. Burners do not start. It takes forever to get warm in the car. The consumption is significantly increased. And in winter, the streets smell more intensely than in the rest of the year. In most cars, when the temperature falls below 10 degrees, the exhaust gas purification system is shut down to protect the engine.

Electric cars also have some technical challenges in winter. The current nextmove video is about the winter performance of electric cars in general and about winter suitability, heating, high-voltage battery and fast charging in cold temperatures.

For this purpose we have carried out various tests with the VW ID3 with several vehicles. The results surprised us very much. Concretely, we will get to the bottom of these questions:

  • Is the heat pump absolutely necessary?
  • How does the battery heating of the ID.3 work in winter?
  • Can I preheat the battery via the app?
  • Why is the consumption in winter on short trips twice as high as in summer?
  • Why does the car charge slower in winter?
  • What do I have to do to get full charging power?
  • What are the sticking points with e-cars in winter and what are the advantages?

https://youtu.be/Zf-ikz0wrls

With the electric car, the winter crunch point is not in the engine but in the battery. A cold battery offers less power, less range, it ages faster and can be niThermal management - magic squarecht charged so quickly. The challenge for the manufacturers is to balance the conflicting goals in this magic square as best as possible.

Not only passengers have comfort needs and want to be chauffeured at a comfortable temperature, but also the battery. At the same time, consumption should not increase too much, or the range should be reduced. This is the task of the so-called thermal management, which most current electric cars have on board. The outside temperatures in all tests were between -2 and +3 °C.

Test no. 1: The cold start of an electric car

You want to start early, the ID.3 stood outside at night, it was frost, the battery is cold, the interior is cold. The car was not preheated and no departure time was programmed. When driving on short distance, the average consumption is 30-40 kWh per 100 kilometers, while in summer less than 15 kWh are needed. Where does that come from?

Of course the interior is completely frozen and it costs a lot of energy to heat it up. But, the ID.3 also warms the battery (thermal management). We have read the values and show what happens.

Winter-Performance Test 1 Temperatur vs Zeit

The graphic shows the cold start behaviour of the ID.3 in the high voltage battery range. Besides the interior heating there is a second heating circuit - a floor heating for the battery, so to speak. We can see the values of this battery heating rising relatively quickly to almost 30 °C after the start. But the battery weighs about 400 kg, you have to heat it first and that takes time.

As a result, the battery temperature increases only slowly and with a time delay. After approx. 10 minutes, the underfloor heating switches off, but the residual heat continues to heat the battery. The target temperature for the battery is 13 °C and was reached in the test after approx. 17 min.

Why does the ID.3 do this? On the one hand, to protect the cell chemistry in the battery - i.e. to prevent premature aging of the battery. On the other hand, to enable optimal performance - both during removal (acceleration) and energy recovery (recuperation). And this is exactly what the ID.3 always does when you drive off with a cold battery. That's why consumption is so high during the first few kilometers. We achieved the magic 13 degrees relatively consistently in all tests - so this seems to be the target value.

Test no. 2: Preheating via App

But there is a smart app for preheating for almost all electric cars or in the car a pre-programming for the departure time. So why not heat the battery before departure? No sooner said than done. We also provide a graphic for this.

Winter-Performance ID.3 Akku

When the heater was started, the battery had 4.5 °C and the same thing happens as when starting. By the way, the switch-on threshold is about 8 °C, i.e. if the battery still has residual heat at the start and is above this value, it will not be heated up again.

But what does it cost to "heat up" the battery once? This was also analyzed.

Winter-Performance Hochheizen Akku Energieverbrauch

The graph shows voltage and current, multiplied results in the power and thus indirectly the energy consumption for heating in the corresponding time window.

We have previously shown that the ID.3 switches off its battery floor heating after about 10 minutes. And when it comes to energy consumption, we see the same thing in the first 10 min, i.e. a significantly increased consumption. The consumption when stationary is about 9 kW power in the first 10 min. For comparison: 9 kW - that is enough to let an electric car roll along at a constant speed of 50 km/h, and here we use this power for waste heat!

You could also say: We invest it. Because a warm battery is also correspondingly more economical, charges faster and lasts longer. After 10 minutes the values jump and the car then heats only the interior with approx. 3 kW power. Roughly speaking, this combined comfort costs one euro, of which ⅔ for the passengers and ⅓ for the battery.

Critically spoken, one could also say that 30 cent land in the warranty cash of the manufacturer, because the heated Akku comes naturally better over the years and becomes hopefully no warranty case. The unheated battery would age somewhat faster and lose more capacity over the years.

The whole thing always depends on the outside temperature, how long the car was parked before and of course the heating power was lowered later while driving. Whether you preheat the car with the app or drive it cold doesn't really make a big difference in the overall consumption, because the car behaves the same in both cases. Preheating is of course more comfortable.

But preheating always costs us a few percentage points of charge and thus also range. Therefore it is much more clever, if possible, to take the river directly still before the start from the Wallbox. This was also tested and the ID.3 surprised us, because it can't do it. This is also shown by the data.

Winter-Performance ID.3 direkt von Wallbox vorheizen

When preheating on the charging cable the charge level does not change, the interior is heated with the current from the wallbox, but the battery remains at 4.5 °C. That was very surprising. The test was repeated: doors opened, the car ventilated for an hour, charging cable disconnected. Then doors closed, car closed and the heating started again via app.

 Winter-Performance ID.3 offene Türen

And lo and behold: unlike before, it heats the battery - with the current from its own battery, as seen on the right in the diagram, the charge level goes down and battery temperature rises.

We confronted VW with it - what does the manufacturer say? Quote: "The topic is well known - a solution is coming in the context of the upcoming software update". So the all-clear at this point, whereby VW does not write which update is meant. If and when the battery is heated is of course different from manufacturer to manufacturer, a second example follows later.

Winter advantages of electric cars

Of course, electric cars also have advantages in winter, which in our opinion more than compensate for the disadvantages: An auxiliary heater is standard in almost all models, so it costs nothing extra. Preheating is possible via the app or time programming.

If not preheated, electric cars are still warm inside faster than combustion engines. The heater may be left running while sitting in the car while parking, but the engine of a combustion engine may not. That costs 80 € penalty e.g. for ice scraping, which is not necessary in an e-car anyway thanks to air conditioning via app.

The lower operating temperature threshold for the e-car is below the diesel. With normal diesel fuel, the threshold is usually -22 °C. With ID.3, VW says "don't park below -30 °C for more than 24 hours", i.e. driving is still possible at -40 °C.

To remind you once again: A car with a combustion engine is not an "automobile" at all in terms of energy, but actually a moving heater. Approx. 2/3 of the energy is used for heat generation and only a small part for locomotion, so driving is a side effect.

Winter suitability & Heat pump

There is hardly any other topic around the electric car that has more myths and opinions. The ID.3 has them, but not in series. The user is spoilt for choice, because the assembly is not cheap. The feature is VW's special recommendation in the configurator for about 1250 Euro. VW promises up to 30 percent more range in winter! ... not 30 percent less heating, but 30 percent more range, thanks to 30 percent less total consumption.

How is this supposed to work? VW writes about it:

"A highly efficient heat pump system compresses refrigerant under high pressure. The resulting heat is used to heat cold air flowing through it. As a result, less energy from the battery is used for high-voltage heating and there is a range advantage over electric vehicles without a heat pump."

In the range around 0 °C, VW documents suggest an advantage of 20 percent more range.

When we had seen the VW announcements about the heat pump, we knew that this was a very ambitious announcement that was worth checking out in practice.

Consumption test heat pump

In order to test the efficiency, first two ID.3 with and without heat pump as well as a KIA eNiro with heat pump as a reference were statically operated overnight for nine hours, and the interior was permanently heated to 23 degrees. As far as possible, identical settings were chosen in all cars.

Standtest Verbrauch Winter Wärmepumpe

Based on the removable capacity of previous tests, the average permanent heat output was calculated.

The ID.3 with heat pump had the highest consumption of the tested vehicles. Actually the car should be more economical, than the comparison vehicle without heat pump. But, there are vehicles and no standing tools. Such a standing test is only half the truth. Because such a E-car has also a little waste heat from the drive and with some manufacturers is well-known that one catches and uses these losses in the heat pump system also.

Hyundai Kona Wärmepumpe 1 In a press release from June of this year, Hyundai literally promises: "Heating the vehicle interior without energy loss", and further: "The heat pump from the HyundHyundai Kona Wärmepumpe Kreislauf Detailai Motor Group is an innovation in heat management that consists of a compressor, an evaporator and a condenser. The waste heat from the vehicle's electrical components is absorbed by the heat pump and used to heat the passenger compartment without significantly affecting the electrical range".

The following day, a test was carried out over almost 300 km in synchronous drive with both ID.3. The graph shows the consumption of the two vehicles according to the on-board computer.

Verbrauch Fahrtest Wärmepumpe

The values of the vehicle without heat pump are on average even slightly below those of the ID.3 with heat pump. The control over the acceptance in the charge state confirmed the value picture. The vehicle without heat pump had after the first two and also after the third round always one per cent more charge state. At the start both cars were always equally fully charged.

We also sent these results to VW and received a reply:

"Without naming further boundary conditions (outside temperatures, preconditioning of the vehicle, settings, ...) the described problem is unfortunately not sufficiently analyzable from the point of view of our technicians. Maybe the heat pump was not yet in heat mode but in "dehumidify" mode (climate)? In principle we hold to our goal of being able to obtain a significant range advantage by the employment of the heat pump technology

This answer is of course a bit evasive. No confirmation of our figures, but also no clear denial. I had of course described the boundary conditions in detail and after a nine-hour endurance test, the battery heating of the first 10 minutes is of no importance. One word in the answer, however, is very exciting, namely the word "objective". Regular viewers of our videos on nextmove know of course that the ID.3 is not really ready yet. At the end of VW's answer there was this exciting sentence:

"Regardless of this, we are basically working on a continuous increase in the climate efficiency of our models"

We also sent these results to VW and reply Our assumptions about the test results were also along these lines. With the ID.3, VW has delivered a very good overall package in many respects. But against the background of the numerous problems in the area of software and the loss of time due to Corona, we probably initially concentrated on ensuring that the cars ran more or less trouble-free and put efficiency issues at the back of the list of priorities. With ID.3, there is certainly still a lot of room for improvement in many areas. Of course bugs have to be eliminated first and then the topics can be tackled one after the other. Honestly naturally the advertising statements on the homepage would have to adapt to the heat pump, e.g. in such a way: "Up to 20 per cent more range. The energy saving function will be added in the update by the end of the year".

Is the heat pump now recommended or not?

As of today we cannot yet give a final answer to the question for ID.3. If VW still increases the efficiency, then we see the target groups approximately in such a way:

  • YES: for frequent drivers, long-distance drivers, users from colder regions for whom the purchase price is not so relevant
  • NO: for less frequent drivers with limited budget from areas where snow is rather the exception

Winter-Performance ID.3 heat pump pump pump pump recommendedWe also clarify an open question: If the ID.3 heats up the battery to 13 °C once, how long will this temperature last if I do not drive? ... e.g. in winter during the day at work or overnight. The appropriate graphic shows: After nine hours of standing time the battery had cooled down to 9 °C without the car trying to reheat it during this time.

Winter-Performance Betriebstemperatur Hochvolakkut

And immediately one more question behind: Doesn't the battery also heat up passively during normal charging on a wallbox? Yes, it does. This was also tested and we show the values for a charging process with 11 kW power. The battery has become approx. 1 degree warmer in one hour. This effect can of course be used to charge the car in winter at the exact departure time, although VW does not recommend charging to 100 percent in everyday use. But you have the effect, even if the car is only charged up to 80 percent.

Fast loading of the ID.3 in winter?

Or the question from many new owners of ID3 or other e-cars: "My car only loads XY kW. I thought it could do twice that. Is my car broken? Is the charging station to blame?" These are the questions that are then asked.

The current state of battery technology in all our e-cars is that the battery does not tolerate as much power in cold weather and therefore the charging capacity is reduced. The manufacturers also deal with this challenge very differently. Of course, the manufacturer can set priorities here already in the product development or in the purchasing department by choosing the cell manufacturer and the used cell chemistry, how important the winter characteristics are. Or/and the manufacturer can solve it by means of active thermal management.

Fast charging in winterFact is, who wants to charge faster in winter than others, must accept usually also higher losses by additional battery heating and pay over the consumption with. But, the battery also has a self-heating while driving. But how long must one drive, in order to get the battery warm and how fast?

We show the values for one of the two ID.3 in the test sequence, the behaviour of the two cars was almost identical.

Our annotated raw data graph shows over four hours the course of the battery charge level and the temperature curve of the battery, between 10 and 44 °C. Before the shown test cycle we charged a few minutes to bring both cars up to 75 percent. At the start both cars had the known value of 13 °C battery temperature and were then driven over 190 km at a speed of 90 km/h. The battery did not heat up during this process. The airstream even cools the battery down a bit.

On arrival at the first charging stop with less than 20 percent charge level, the charging capacity was in the range of 55-65 kW. The vehicle did not actively heat the battery in addition, this shows temperature from the heating circuit.

heating circuit data ID.3

Arriving at the first charge stop with less than 20 We see the battery temperature rise, but the heating circuit does not change at all during the first minutes of charging. Only at about 25 °C battery temperature the ID.3 starts the circuit, but not to heat, but to catch the battery temperature at about 30 °C. The ID.3 is, so to speak, content with charging capacities in the range of 60 kW. Because it does not heat, the user stands a few minutes longer, but has less losses. Whether we will soon see a navigation-based intelligent preheating of the battery at VW in the preview of such a fast charging process as at Tesla or Porsche, we do not know yet.

In the further course of the test drive over 95 km at 150 km/h the battery remains warm or even became even warmer despite the wind. The wave movement in the graphic is caused by the thermal management.

Thermalmanagement ID.3 Winter-Testfahrt

When we arrived at the second charging stop the battery had 28°C and both cars could be charged with maximum power of 101 and 104kW. The temperature continued to rise while charging. In the graphic we can see that the temperature went up again steeply during the second charging process. Maximum is 44°C. So the thermal management allows higher temperatures than during the charging stop before.

Our conclusion in this discipline: The software currently prioritizes efficiency over maximum charging power, but from the second charging stop, the ID3 should be able to get full power on the fast charger even in winter. Users should plan the charging stops in such a way that they arrive at the fast charger in the range of 10-20% charge level. Maybe the car will take over this planning soon.

Winter behavior Kia in comparison

How does the competition from Korea feel about winter efficiency, preheating, battery heating and fast charging. Representative for the current vehicles of Hyundai and Kia with the 64 kWh battery, which probably all behave the same, we show the test run of a KIA e-Niro.

Thermalmanagement Kia um Vergleich zu ID.3

Preheating via app: The battery remains cold even though it was only about 1 °C. Driving off with an almost frozen battery does not matter to the car. The battery is not heated. The consumption remains low on short trips. The so-called winter mode was activated by the way.

When arriving at the quick charger, the car charges on the 2 °C cold battery with 25 kW power. That sounds little, but a Tesla battery would probably not have charged at all, but would have just heated up the car. Now the Kia also heats up.

After about 14 minutes the system has the battery at 5 °C, which is enough for the next jump then 44 kW charging power. You can't see the charging power in the graphic, because only two values can be displayed at a time. Therefore it was determined in parallel and entered in the graphic. After another 16 minutes the battery is at 15 °C and the charging power jumps up to 58 kW, which is relatively close to the technically possible optimum for this platform of 72 kW power.

The heating circuit had hurried ahead and at this point already has 34 °C and at the same time decides that enough is heated. 58 kW charging power must be enough, after all, the Koreans are economical cars. But the time lag also shows the inertia of the systems. Because of the high mass of the battery, it certainly requires some testing by the manufacturers to find the right thresholds and switching points. So Kia does it differently than VW. VW heats the battery in cold weather at every start and at the fast charger the battery has to get to temperature by itself. KIA leaves the battery cold in everyday life and only heats it when it is on the quick charger.

In the future, VW will also be able to use software updates to adjust and continuously optimize the vehicles of the new modular system in its fleet. We are curious to see how VW performs in this discipline.

(Images: Hyundai (2), nextmove)